

EasySpheres Incorporated

Part Number: 10-4258-XX (-XX denotes sphere size)
Version No: 2.4
Safety Data Sheet according to OSHA HazCom Standard (2012) requirements

SECTION 1 Identification

Product Identifier

Product name	Solder Spheres Sn42Bi58
Synonyms	Low Temp. Solder Balls
Other means of identification	10-4258-XX (-XX denotes sphere size)

Issue Date: 22/04/2023 Print Date: 22/04/2023

L.GHS.USA.EN

Recommended use of the chemical and restrictions on use

Relevant identified uses	BGA ball replacement and attach
--------------------------	---------------------------------

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	EasySpheres Incorporated
Address	12012 SW Powell Butte Hwy Powell Butte Oregon 97753 United States
Telephone	(858) 486-4068
Fax	Not Available
Website	www.easyspheres.com
Email	admin@easyspheres.com

Emergency phone number

Association / Organisation	CHEMTREC 24-Hour Emergency Response
Emergency telephone numbers	(800) 424-9300
Other emergency telephone numbers	8584864068

SECTION 2 Hazard(s) identification

Classification of the substance or mixture

NFPA 704 diamond

200

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances)

Classification

Serious Eye Damage/Eye Irritation Category 2A, Hazardous to the Aquatic Environment Acute Hazard Category 1, Acute Toxicity (Oral) Category 4

Hazard pictogram(s)	
Signal word	Warning

Hazard statement(s)

H319	Causes serious eye irritation.
H400	Very toxic to aquatic life.
H302	Harmful if swallowed.

Hazard(s) not otherwise classified

Not Applicable

Precautionary statement(s) Prevention

P264	Wash all exposed external body areas thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P280	Wear protective gloves, protective clothing, eye protection and face protection.

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P391	Collect spillage.	
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.	
P330	Rinse mouth.	

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
7440-31-5	42	tin
7440-69-9	58	bismuth

SECTION 4 First-aid measures

Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. DO NOT attempt to remove particles attached to or embedded in eye . Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye. Seek urgent medical assistance, or transport to hospital.

Page 3 of 17

Solder Spheres | Sn42Bi58

Skin Contact	 If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Most important symptoms and effects, both acute and delayed

See Section 11

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

Severe bismuth intoxication may be treated with dimercaptol (BAL in oil). Induction of acidosis by administration of ammonium chloride has been claimed to promote mobilisation of bismuth from tissue depots and increase the rate of urinary excretion.

[Martindale:The Extra Pharmacopoeia]

In mouse models D-penicillamine (Cuprimine M.S. & D) is a useful chelating agent. [Ellenhorn & Barceloux: Medical Toxicology]

Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure.

- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 Fire-fighting measures

Extinguishing media

DO NOT use halogenated fire extinguishing agents.

Metal dust fires need to be smothered with sand, inert dry powders.

DO NOT USE WATER, CO2 or FOAM.

- ▶ Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire.
- Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas.
- Chemical reaction with CO2 may produce flammable and explosive methane.
- If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Reacts with acids producing flammable / explosive hydrogen (H2) gas
----------------------	---

Special protective equipment and precautions for fire-fighters

Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 DO NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal. DO NOT use water or foam as generation of explosive hydrogen may result.

 With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Generally, metal fire risks exist when sawdust, machine shavings and other metal 'fines' are present. Metal powders, while generally regarded as non-combustible: May burn when metal is finely divided and energy input is high. May react explosively with water. May be ignited by friction, heat, sparks or flame. 	ersion No: 2.4	Solder Spheres Sn42Bi58	Print Date: 22/04/2023
 May REIGNITE atter fire is extinguished. Will burn with intense heat. Note: Metal dust fires are slow moving but intense and difficult to extinguish. Containers may explode on heating. Dusts or fumes may form explosive mixtures with air. Gases generated in fire may be poisonous, corrosive or irritating. Hot or burning metals may react violently upon contact with other materials, such as oxidising agents and extinguishing agents used on fires involving ordinary combustibles or flammable liquids. Temperatures produced by burning metals can be higher than temperatures generated by burning flammable liquids Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable liquids would be incapable of burning. Decomposition may produce toxic fumes of: metal oxides May emit poisonous fumes. 	 not represent unusual fire risks because th combustion cannot be maintained - this metal fire risks exist when sawdust, machi Metal powders, while generally regarded a May burn when metal is finely divided May react explosively with water. May be ignited by friction, heat, sparks May REIGNITE after fire is extinguished Will burn with intense heat. Note: Metal dust fires are slow moving but in Containers may explode on heating. Dusts or fumes may form explosive mi Gases generated in fire may be poisor Hot or burning metals may react violer agents used on fires involving ordinary Temperatures produced by burning metals can continue to burn in cor flammable liquids would be incapab Decomposition may produce toxic fumes or metal oxides 	hey have the ability to conduct heat away from hot spots so effice eans that it will require a lot of heat to ignite a mass of combusti ne shavings and other metal 'fines' are present. as non-combustible: and energy input is high. are or flame. ad. tense and difficult to extinguish. xtures with air. hous, corrosive or irritating. http upon contact with other materials, such as oxidising agents a r combustibles or flammable liquids. etals can be higher than temperatures generated by burning flam arbon dioxide, nitrogen, water, or steam atmospheres in which of le of burning.	iently that the heat of ble metal. Generally, and extinguishing nmable liquids

Page 4 of 17

Issue Date: 22/04/2023

SECTION 6 Accidental release measures

Part Number: 10-4258-XX (-XX denotes sphere size)

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

1

Minor Spills	 Environmental hazard - contain spillage. Clean up all spills immediately. Avoid breathing dust and contact with skin and eyes. Wear protective clothing, gloves, safety glasses and dust respirator. Use dry clean up procedures and avoid generating dust. Sweep up, shovel up or Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). Place spilled material in clean, dry, sealable, labelled container.
Major Spills	 Environmental hazard - contain spillage. Do not use compressed air to remove metal dusts from floors, beams or equipment Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation. Use non-sparking handling equipment, tools and natural bristle brushes. Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations Cover and reseal partially empty containers. Do not allow chips, fines or dusts to contact water, particularly in enclosed areas. If molten: Contain the flow using dry sand or salt flux as a dam. All tooling (e.g., shovels or hand tools) and containers which come in contact with molten metal must be preheated or specially coated, rust free and approved for such use. Allow the spill to cool before remelting scrap. Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. If contamination of drains or waterways occurs, advise Emergency Services.

Page 5 of 17

Solder Spheres | Sn42Bi58

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling	 For molten metals: Molten metals: Molten metal and water can be an explosive combination. The risk is greatest when there is sufficient molten metal to entrap or seal off water. Water and other forms of contamination on or contained in scrap or remet ingot are known to have caused explosions in melting operations. While the products may have minimal surface roughness and internal voids, there remains the possibility of moisture contamination or entrapment. If confined, even a few drops can lead to violent explosions. All tooling, containers, molds and ladles, which come in contact with molten metal must be preheated or specially coated, rust free and approved for such use. Any surfaces that may contact molten metal (e.g. concrete) should be specially coated Orops of molten metal in water (e.g. from plasma arc cutting), while not normally an explosion hazard, can generate enough flammable hydrogen gas to present an explosion hazard. Vigorous circulation of the water and removal of the particles minimise the heaterd. During melting operations, the following minimum guidelines should be observed: Inspect all materials prior to furnace charging and completely remove surface contamination such as water, ice, snow, deposits of grease and oil or other surface contamination resulting from weather exposure, shipment, or storage. Store materials in dry, heated areas with any cracks or cavities pointed downwards. Preheat and dry large objects adequately before charging in to a furnace containing molten metal. This is typically done by the use of a drying oven or homogenising furnace. The dry cycle should bring the metal temperature of the coldest item of the batch to 200 degree C (400 deg F) and then hold at that temperature for 6 hours. Avoid all personal contact, including inhalation. Wear and entified barea. Porvent concentration in hollows and sumps. DO NOT enter confined spaces until atmospher
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry area protected from environmental extremes. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. For major quantities: Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Conditions for safe storage, including any incompatibilities

Suitable container	 Bulk bags: Reinforced bags required for dense materials. CARE: Packing of high density product in light weight metal or plastic packages may result in container collapse with product release Heavy gauge metal packages / Heavy gauge metal drums
Storage incompatibility	This substance contains both electronegative and electropositive metals; their composite effect can not be determined in terms of oxidising potential or reaction with and acids (hydrogen ion sources). The material is described as an electronegative metal. The activity or electromotive series of metals is a listing of the metals in decreasing order of their reactivity with hydrogen-ion sources such as water and acids. In the reaction with a hydrogen-ion source, the metal is oxidised to a metal ion, and the hydrogen ion is reduced to H2. The ordering of the activity series can be related to the standard reduction potential of a metal cation. The more positive the standard reduction potential of the cation, the more difficult it is to oxidise the metal to a hydrated metal cation and the later that metal falls in the series Three notable groups comprise the series

Page 6 of 17

Solder Spheres | Sn42Bi58

electropositive metals electronegative metals Electronegative metals.have electronegativities that fall between 1.9 and 2.5.. Cations of these metals generally have positive standard reduction potentials. They: are not oxidised by H+ (acids) are good oxidising agents ▶ oxidise H2 producing H+ and depositing the metals from an aqueous solution + produce cations that will oxidise more active metals to the cation - the less active metal is deposited as the metal Electronegative metals are not corroded by oxygen. They are called "nobel metals" and are used in coinage and jewelry. Some in this group are slowly oxidised. The oxides formed are not very stable and can be decomposed by heating. Metals in this group can be obtained by thermal decomposition of their oxides. Although non-oxidising acids can't attack electronegative metals, oxidising acids (such as nitric acid) often dissolve them. http://www.wou.edu/las/physci/ch412/activity.htm The material is described as an electropositive metal. The activity or electromotive series of metals is a listing of the metals in decreasing order of their reactivity with hydrogen-ion sources such as water and acids. In the reaction with a hydrogen-ion source, the metal is oxidised to a metal ion, and the hydrogen ion is reduced to H2. The ordering of the activity series can be related to the standard reduction potential of a metal cation. The more positive the standard reduction potential of the cation, the more difficult it is to oxidise the metal to a hydrated metal cation and the later that metal falls in the series Three notable groups comprise the series very electropositive metals electropositive metals electronegative metals Electropositive metals have electronegativities that fall between 1.4 and 1.9 Cations of these metals generally have standard reduction potentials between 0.0 and -1.6 V They: do not react very readily with water to release hydrogen react with H+ (acids) Electropositive metals do not burn in air as readily as do very electropositive metals. The surfaces of these metals will tarnish in the presence of oxygen forming a protective oxide coating. This coating protects the bulk of the metal against further oxidation (the metal is passivated). Reaction is reduced in the massive form (sheet, rod, or drop), compared with finely divided forms. The less active metals will not burn in air but: can react exothermically with oxidising acids to form noxious gases. catalyse polymerisation and other reactions, particularly when finely divided • react with halogenated hydrocarbons (for example, copper dissolves when heated in carbon tetrachloride), sometimes forming explosive compounds. Elemental metals may react with azo/diazo compounds to form explosive products Finely divided metal powders develop pyrophoricity when a critical specific surface area is exceeded; this is ascribed to high heat of oxide formation on exposure to air. ▶ Safe handling is possible in relatively low concentrations of oxygen in an inert gas Several pyrophoric metals, stored in glass bottles have ignited when the container is broken on impact. Storage of these materials moist and in metal containers is recommended. + The reaction residues from various metal syntheses (involving vacuum evaporation and co-deposition with a ligand) are often pyrophoric If the surface of the metal is in contact with both oxygen and water, corrosion can occur. In corrosion, the metal acts as an anode and is oxidised. Many metals may incandesce, react violently, ignite or react explosively upon addition of concentrated nitric acid. Some electropositive metals do not react with nitric acid because they are passivated. http://www.wou.edu/las/physci/ch412/activity.htm Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride. These trifluorides are hypergolic oxidisers. They ignite on contact (without external source of heat or ignition) with recognised fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ianition

- The state of subdivision may affect the results.
- Many metals may incandesce, react violently, ignite or react explosively upon addition of concentrated nitric acid.

X — Must not be stored together

0 — May be stored together with specific preventions

Page 7 of 17

Solder Spheres | Sn42Bi58

+ — May be stored together

Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
US OSHA Permissible Exposure Limits (PELs) Table Z-1	tin	Particulates Not Otherwise Regulated (PNOR)- Total dust	15 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	tin	Particulates Not Otherwise Regulated (PNOR)- Respirable fraction	5 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	tin	Inert or Nuisance Dust: Respirable fraction	5 mg/m3 / 15 mppcf	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	tin	Inert or Nuisance Dust: Total Dust	15 mg/m3 / 50 mppcf	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	tin	Tin	2 mg/m3	Not Available	Not Available	[*Note: The REL also applies to other inorganic tin compounds (as Sn) except tin oxides.]
US OSHA Permissible Exposure Limits (PELs) Table Z-1	bismuth	Particulates Not Otherwise Regulated (PNOR)- Respirable fraction	5 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	bismuth	Particulates Not Otherwise Regulated (PNOR)- Total dust	15 mg/m3	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	bismuth	Inert or Nuisance Dust: Respirable fraction	5 mg/m3 / 15 mppcf	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	bismuth	Inert or Nuisance Dust: Total Dust	15 mg/m3 / 50 mppcf	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	bismuth	Particulates not otherwise regulated	Not Available	Not Available	Not Available	See Appendix D

Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3
tin	6 mg/m3	67 mg/m3		400 mg/m3
bismuth	15 mg/m3	170 mg/m3		990 mg/m3
Ingredient	Original IDLH		Revised IDLH	
tin	Not Available		Not Available	
bismuth	Not Available		Not Available	

MATERIAL DATA

A TLV-TWA is recommended so as to minimise the risk of stannosis. The STEL (4.0 mg/m3) has been eliminated (since 1986) so that additional toxicological data and industrial hygiene experience may become available to provide a better base for quantifying on a toxicological basis what the STEL should in fact be.

Exposure controls

Т

	Metal dusts must be collected at the source of generation as they are potentially explosive.
Appropriate engineering	Avoid ignition sources.
controls	 Good housekeeping practices must be maintained.
	Dust accumulation on the floor, ledges and beams can present a risk of ignition, flame propagation and secondary explosions.

Do not use compressed air to remove settled materials from floors, beams or equipment Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation. Use non-sparking handling equipment, tools and natural bristle brushes. Cover and reseal partially empty containers. Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations. Do not allow chips, fines or dusts to contact water, particularly in enclosed areas. Metal spraying and blasting should, where possible, be conducted in separate rooms. This minimises the risk of supplying oxygen, in the form of metal oxides, to potentially reactive finely divided metals such as aluminium, zinc, magnesium or titanium. Work-shops designed for metal spraying should possess smooth walls and a minimum of obstructions, such as ledges, on which dust accumulation is possible. Wet scrubbers are preferable to dry dust collectors. Bag or filter-type collectors should be sited outside the workrooms and be fitted with explosion relief doors. Cyclones should be protected against entry of moisture as reactive metal dusts are capable of spontaneous combustion in humid or partially wetted states. Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec. Local ventilation and vacuum systems must be designed to handle explosive dusts. Dry vacuum and electrostatic precipitators must not be used, unless specifically approved for use with flammable/ explosive dusts. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Type of Contaminant: Air Speed: welding, brazing fumes (released at relatively low velocity into moderately still air) 0.5-1.0 m/s (100-200 f/min.) Within each range the appropriate value depends on: Lower end of the range Upper end of the range 1: Room air currents minimal or favourable to capture 1: Disturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Individual protection measures, such as personal protective equipment Safety glasses with side shields. Chemical googles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should Eye and face protection include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Skin protection See Hand protection below The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands Hands/feet protection

should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and

dexterity

Version No: 2.4	Solder Spheres Sn42Bi58 Print Date: 22/04/2023
	 Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: Excellent when breakthrough time > 20 min Good when breakthrough time > 20 min Fair when breakthrough time > 20 min Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove model. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove sof varying thickness may be required for specific tasks. For example: Thinner gloves (up to 3 mor more) may be required where there is a mechanical (as well as a chemical) task. Where there is abraision or puncture potential Gloves thickness may also vary observes using gloves yinh schaus based and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Thicker gloves (up to 3 mor more) may be required where there is a mechanical
Body protection	See Other protection below
Other protection	 Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Page 9 of 17

Issue Date: 22/04/2023

Respiratory protection

Part Number: 10-4258-XX (-XX denotes sphere size)

Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	P1 Air-line*	-	PAPR-P1 -
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-
		Air-line*	-
100+ x ES	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.

• The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).

• Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.

• Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.

• Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)

Page 10 of 17 Solder Spheres | Sn42Bi58

· Use approved positive flow mask if significant quantities of dust becomes airborne.

· Try to avoid creating dust conditions.

Class P2 particulate filters are used for protection against mechanically and thermally generated particulates or both.

P2 is a respiratory filter rating under various international standards, Filters at least 94% of airborne particles Suitable for:

· Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing.

 \cdot Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke.

· Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Gray		
Physical state	Solid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Available	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

	number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Not normally a hazard due to non-volatile nature of product Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure. Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
Ingestion	As tin salts (stannous and stannic) are generally poorly absorbed from the gastrointestinal tract. Ingestion of food contaminated with tin may cause transient gastrointestinal disturbances such as nausea, vomiting, diarrhea, fever and headache. Parenteral administration provides a substantial description of tin toxicology. Systemic tin is highly toxic producing diarrhoea, muscle paralysis, twitching and neurological damage. By mouth most tin salts are relatively non-toxic. A number of tin "food" poisonings, producing vomiting, nausea and diarrhoea, have occurred after ingestion of fruit juices etc. with tin levels above 1400 ppm. This appears to be due to gastric irritation resulting from the activity and astringency of tin compounds, rather than systemic toxicity. Severe growth retardation occurs in rats with dietary stannous salts at levels exceeding 0.3%. The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Owing to limited gastro-intestinal absorption, administration of insoluble bismuth compounds by mouth does not usually give rise to acute toxic effects. They are excreted in the faeces. Stomatitis (ulceration of mouth parts) may result following ingestion. Absorbed bismuth salts permeate the body fluids and tissues and are excreted mainly in the urine but some bismuth is retained in tissues. It is deposited in the metaphyses of young bones and can pass the placenta into the foet
Skin Contact	The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Eye	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.
Chronic	Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Chronic exposure to tin dusts and fume results in "stannosis" a mild form of pneumoconiosis. Chest symptoms develop several years after breathing difficulties (dyspnae) occur. No case of massive fibrosis from over-exposure to tin has been reported.

Page 12 of 17

Solder Spheres | Sn42Bi58

Symptoms of chronic bismuth toxicity in humans consist of decreased appetite, weakness, rheumatic pain, diarrhoea, fever, foul breath, gingivitis and dermatitis. A blue line of the gums, the "bismuth line", may persist for years after exposure has ceased. Jaundice and conjunctival haemorrhage are rare, but have been reported. Bismuth neuropathy (kidney damage), with proteinuria may occur. The kidney is the site of highest concentration with liver concentrations being significantly lower. Renal failure may be reversible if treated early but anuria and death have occurred.

Metallic dusts generated by the industrial process give rise to a number of potential health problems. The larger particles, above 5 micron, are nose and throat irritants. Smaller particles however, may cause lung deterioration. Particles of less than 1.5 micron can be trapped in the lungs and, dependent on the nature of the particle, may give rise to further serious health consequences. Metals are widely distributed in the environment and are not biodegradable. Biologically, many metals are essential to living systems and are involved in a variety of cellular, physiological, and structural functions. They often are cofactors of enzymes, and play a role in transcriptional control, muscle contraction, nerve transmission, blood clotting, and oxygen transport and delivery. Although all metals are potentially toxic at some level, some are highly toxic at relatively low levels. Moreover, in some cases the same metal can be essential at low levels and toxic at higher levels, or it may be toxic via one route of entry but not another. Toxic effects of some metals are associated with disruption of functions of essential metals. Metals may have a range of effects, including cancer, neurotoxicity, immunotoxicity, cardiotoxicity, reproductive toxicity, teratogenicity, and genotoxicity. Biological half lives of metals vary greatly, from hours to years. Furthermore, the half life of a given metal varies in different tissues. Lead has a half life of 14 days in soft tissues and 20 years in bone.

In considering how to evaluate the toxicity of metals of potential concern, a number of aspects of metal toxicity should be kept in mind:

Different species vary in their responses to different metals; in some cases, humans are more sensitive than rodents. Thus, there is a need for broad-based testing of metals;

The route of exposure may affect the dose and site where the metal concentrates, and thus the observed toxic effects;

Metal-metal interactions can reduce or enhance toxicity; biotransformation can reduce or enhance toxicity;

+ It is difficult to predict the toxicity of one metal based on the adverse effects of another; in trying to evaluate the toxicity of one particular metal compound, predictions based on similar compounds of the same metal may be valid.

Calder Caberra I Ca 40DiCo	ΤΟΧΙΟΙΤΥ	IRRITATION	
Solder Spheres Sn42Bi58	Not Available	Not Available	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
tin	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
	Inhalation(Rat) LC50: >4.75 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50: >2000 mg/kg ^[1]		
h:	тохісіту	IRRITATION	
bismuth	Oral (Rat) LD50: 5000 mg/kg ^[2]	Not Available	
Legend:	 Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances 		

Solder Spheres Sn42Bi5	Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.
AIT.	No significant acute toxicological data identified in literature search.

Acute Toxicity	✓	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

X - Data either not available or does not fill the criteria for classification Data available to make classification

Page 13 of 17

Solder Spheres | Sn42Bi58

SECTION 12 Ecological information

	Endpoint	Test Duration (hr)	Species	Value	Source
Solder Spheres Sn42Bi58	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
tin	NOEC(ECx)	168h	Crustacea	<0.005mg/l	2
	EC50	72h	Algae or other aquatic plants	>0.0192mg/l	2
	LC50	96h	Fish	>0.0124mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
bismuth	ErC50	72h	Algae or other aquatic plants	>1.26mg/l	2
	NOEC(ECx)	72h	Algae or other aquatic plants	1mg/l	2
	EC50	72h	Algae or other aquatic plants	>1.26mg/l	2
	LC50	96h	Fish	>100mg/l	2
	EC50	48h	Crustacea	>1.26mg/l	2

4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) -Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For Metal:

Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air.

Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities.

Aguatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. Ionic species may bind to dissolved ligands or sorb to solid particles in water.

Ecotoxicity: Even though many metals show few toxic effects at physiological pH levels, transformation may introduce new or magnified effects.

Tin may exist in either divalent (Sn2+) or tetravalent (Sn4+) cationic (positively charged) ions under environmental conditions. Tin(II) dominates in reduced (oxygen-poor) water, and will readily precipitate as a sulfide (SnS) or as a hydroxide (Sn(OH)2) in alkaline water. Tin(IV) readily hydrolyses, and can precipitate as a hydroxide. The solubility product of Sn(OH)4 has been measured at approximately 10 exp(-56) g/L at 25 °C. In general, tin(IV) would be expected to be the only stable ionic species in the weathering cycle.

Tin in water may partition to soils and sediments. Cations such as Sn2+ and Sn4+ will generally be adsorbed by soils to some extent, which reduces their mobility. Tin is generally regarded as being relatively immobile in the environment. However, tin may be transported in water if it partitions to suspended sediments, but the significance of this mechanism has not been studied in detail. Transfer coefficients for tin in a soil-plant system were reported to be 0.01-0.1.

A bioconcentration factor (BCF) relates the concentration of a chemical in plants and animals to the concentration of the chemical in the medium in which they live. It was estimated that the BCFs of inorganic tin were 100, 1,000, and 3,000 for marine and freshwater plants, invertebrates, and fish, respectively. Marine algae can bioconcentrate tin(IV) ion by a factor of 1,900.

Inorganic tin cannot be degraded in the environment, but may undergo oxidation-reduction, ligand exchange, and precipitation reactions. It has been established that inorganic tin can be transformed into organometallic forms by microbial methylation. Inorganic tin may also be converted to stannane (H4Sn) in extremely anaerobic (oxygen-poor) conditions by macroalgae.

Bismuth is often marketed as an environmentally friendly alternative to the traditional, more toxic heavy metals. Under the present level of exposure and emission to the environment, no adverse effects of bismuth have been observed on humans and animals. According to a Swedish study, no biological functions of bismuth are known.

Bismuth occurs in fresh and sea water as hydroxides (Bi(OH)2+ and Bi(OH)30). In the aquatic environment bismuth is associated with particulate matter with a high retention time in the aquatic environment. Bismuth can be methylated in the environment. In this form, bismuth has high lipophilicity and it can bioaccumulate in lipid-rich environments. If plants take up the metal, it can be partly or completely deactivated by complexation with phytochelation. Deactivation of enzymes, which are affected by metals, is thereby avoided. The fact that this mechanism of defence is active with bismuth (and other metals, e.g. Cd2+ and Pb2+) indicates that the metal can affect biological functions. The metal has high affinity to particles (comparable with leads metal affinity).

Only limited information regarding the environmental toxicology of bismuth and bismuth compounds is available. Bismuth nitrate has high acute toxicity in the aquatic environment and EC50 has been determined to 0.66 mg/L in a four day test using Tubifex tubifex as test organism. According to this result, the compound should be classified as very toxic to aquatic organisms. The available data on environmental fate of bismuth is not sufficient to conclude on its ability to bioaccumulate. In the marine environment, bismuth is typically associated with particulate matter.

Due to the potential for bioaccumulation bismuth might cause adverse environmental and health effects.

Page 14 of 17 Solder Spheres | Sn42Bi58

DO NOT discharge into sewer or waterways.

Persistence and degradability

No Data available for all ingredients No Data available for all ingredients	Ingredient	Persistence: Water/Soil	Persistence: Air
5		No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation	
	No Data available for all ingredients	
Mobility in soil		
wobinty in Son		
Ingredient	Mobility	
	No Data available for all ingredients	

SECTION 13 Disposal considerations

Waste treatment methods Product / Packaging disposal DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Recycle wherever possible or consult manufacturer for recycling options. Consult State Land Waste Management Authority for disposal. Bury residue in an authorised landfill. Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Shipping container and transport vehicle placarding and labeling may vary from the below information. Products that are regulated for transport will be packaged and marked as Dangerous Goods in Excepted Quantities according to US DOT, IATA and IMDG regulations. In case of reshipment, it is the responsibility of the shipper to determine the appropriate labels and markings in accordance with applicable transport regulations.

Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
tin	Not Available
bismuth	Not Available

Transport in bulk in accordance with the IGC Code

Product name	Ship Type
tin	Not Available
bismuth	Not Available

Page 15 of 17 Solder Spheres | Sn42Bi58

SECTION 15 Regulatory information

'n

Safety, health and environmental regulations / legislation specific for the substance or mixture

tin is found on the following regulatory lists	
International WHO List of Proposed Occupational Exposure Limit (OEL)	US NIOSH Recommended Exposure Limits (RELs)
Values for Manufactured Nanomaterials (MNMS)	US OSHA Permissible Exposure Limits (PELs) Table Z-1
US - Alaska Air Quality Control - Concentrations Triggering an Air Quality	US OSHA Permissible Exposure Limits (PELs) Table Z-3
Episode for Air Pollutants Other Than PM-2.5	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory
US - Massachusetts - Right To Know Listed Chemicals	
US DOE Temporary Emergency Exposure Limits (TEELs)	
bismuth is found on the following regulatory lists	
International WHO List of Proposed Occupational Exposure Limit (OEL)	US OSHA Permissible Exposure Limits (PELs) Table Z-1
Values for Manufactured Nanomaterials (MNMS)	US OSHA Permissible Exposure Limits (PELs) Table Z-3
US - Alaska Air Quality Control - Concentrations Triggering an Air Quality	US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory
Episode for Air Pollutants Other Than PM-2.5	

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

Section 311/312 hazard categories

US DOE Temporary Emergency Exposure Limits (TEELs) US NIOSH Recommended Exposure Limits (RELs)

Flammable (Gases, Aerosols, Liquids, or Solids)	No
Gas under pressure	No
Explosive	No
Self-heating	No
Pyrophoric (Liquid or Solid)	No
Pyrophoric Gas	No
Corrosive to metal	No
Oxidizer (Liquid, Solid or Gas)	No
Organic Peroxide	No
Self-reactive	No
In contact with water emits flammable gas	No
Combustible Dust	No
Carcinogenicity	No
Acute toxicity (any route of exposure)	Yes
Reproductive toxicity	No
Skin Corrosion or Irritation	No
Respiratory or Skin Sensitization	No
Serious eye damage or eye irritation	Yes
Specific target organ toxicity (single or repeated exposure)	No
Aspiration Hazard	No
Germ cell mutagenicity	No
Simple Asphyxiant	No
Hazards Not Otherwise Classified	No

US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4)

None Reported

State Regulations

US. California Proposition 65 None listed

National Inventory Status

Issue Date: 22/04/2023 Print Date: 22/04/2023

Solder Spheres | Sn42Bi58

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (tin; bismuth)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (tin; bismuth)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	22/04/2023
Initial Date	23/04/2023

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average
PC-STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit。
IDLH: Immediately Dangerous to Life or Health Concentrations
ES: Exposure Standard
OSF: Odour Safety Factor
NOAEL :No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index
AIIC: Australian Inventory of Industrial Chemicals
DSL: Domestic Substances List
NDSL: Non-Domestic Substances List
IECSC: Inventory of Existing Chemical Substance in China
EINECS: European INventory of Existing Commercial chemical Substances
ELINCS: European List of Notified Chemical Substances
NLP: No-Longer Polymers
ENCS: Existing and New Chemical Substances Inventory
KECI: Korea Existing Chemicals Inventory
NZIoC: New Zealand Inventory of Chemicals
PICCS: Philippine Inventory of Chemicals and Chemical Substances
TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory

Issue Date: 22/04/2023 Print Date: 22/04/2023

INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances